Hunting for Dark Matter (a) Colliders

SUSY 2011

(Hey, can we call this conference something different next year?)

Roni Harnik, Fermilab

Bai, Fox, RH - 1005.3797 Fox, RH, Kopp, Tsai - 1103.0240 Fox, RH, Kopp, Tsai - in progress

See talk by Tim on Wed.

Very related work by the "Irvine Clan":

Goodman, Ibe, Rajaraman, Shepard, Tait and Haibo Yu -1005.1286 Goodman, Ibe, Rajaraman, Shepard, Tait and Haibo Yu - 1008.1783 Fortin and Tait - 1103.3289

Rajaraman, Shepard, Tait and Wijangco - 1108.1196

Probes of DM Interactions

* We hope to probe dark matter in several ways:

DM-nucleus scattering

* This talk will relate this blob to DM production at a collider as directly and model independently as possible:

(Focus on direct detection in this talk. similar games can be played for indirect)

Direct Detection

- * Direct detection places limits on
- * Heroic effort with remarkable results.
- * DD has some weaknesses.

Direct Detection

* Direct detection places limits on

- * Heroic effort with remarkable results.
- * DD has some weaknesses.

Direct Detection

- * Direct detection places limits on
- * Heroic effort with remarkable results.
- * DD has some weaknesses.

* In order to get a particular DM-nucleon cross

section,

, we assume the existence of

a DM-hadron interaction,

* The same interaction can lead to DM production at a hadron machine.

* In order to get a particular DM-nucleon cross

section,

, we assume the existence of

a DM-hadron interaction,

* The same interaction can lead to DM production at a hadron machine.

* Mono-jet searches can place limits on the plane.

* These are **conservative** limits.

In a specific model there may be other ways to produce DM, e.g. through cascades from heavy colored states.

But mono-jet are certainly

* Mono-jet searches can place limits on the plane.

The collider does not have a low energy threshold

The collider does

not pay a price

for spin dependence

Setting Limits

Operators

Describe DM interactions as higher DM operators (possibly mediated by light mediators)

$$\begin{array}{lll} \mathcal{O}_1 & = & \frac{i\,g_\chi\,g_q}{q^2-M^2}\,(\bar{q}q)\,(\bar{\chi}\chi)\;, & \text{SI, scalar exchange} \\ \\ \mathcal{O}_2 & = & \frac{i\,g_\chi\,g_q}{q^2-M^2}\,(\bar{q}\gamma_\mu q)\,(\bar{\chi}\gamma^\mu\chi)\;, & \text{SI, vector exchange} \\ \\ \mathcal{O}_3 & = & \frac{i\,g_\chi\,g_q}{q^2-M^2}\,(\bar{q}\gamma_\mu\gamma_5 q)\,(\bar{\chi}\gamma^\mu\gamma_5\chi)\;, & \text{SD, axial-vector exchange} \\ \\ \mathcal{O}_4 & = & \frac{i\,g_\chi\,g_q}{q^2-M^2}\,(\bar{q}\gamma_5 q)\,(\bar{\chi}\gamma_5\chi)\;, & \text{SD and mom. dep., psuedo-scalar exchange} \\ \end{array}$$

Cross Sections

* The direct detection cross section ($q \sim 100 \text{ MeV}$):

$$\sigma_{\rm DD} \sim g_{\chi}^2 g_q^2 \frac{\mu^2}{M^4} \qquad \qquad \mu = \frac{m_{\chi} m_N}{m_N + m_{\chi}}$$

$$\mu = \frac{m_{\chi} m_N}{m_N + m_{\chi}}$$

* Mono-jet + E_T ($q \sim 10 - 100 \; {\rm GeV}$):

$$\frac{\overline{q}}{q}$$

$$M \lesssim 100 \; \mathrm{GeV}$$

$$M \gtrsim 100 \; \mathrm{GeV}$$

CDF: jet + MET (Ifb-1)

counting experiment:

Observed: 8449 events

Expected: 8663+-332

$$E_T > 80 \, \text{GeV}$$
 $p_T(j1) > 80 \, \text{GeV}$
 $p_T(j2) < 30 \, \text{GeV}$
 $p_T(j3) < 20 \, \text{GeV}$

Limits on
$$\Lambda \equiv \frac{M}{\sqrt{g_{\chi}g_1}}$$
:

* Operators are simple to implement. Limits on cutoff:

Limits on
$$\Lambda \equiv \frac{M}{\sqrt{g_{\chi}g_{1}}}$$
:

- * The limits are fairly flat in mass (up to ~200 GeV).
- * The limits are fairly independent of the operator structure. Strong SD constraints.
- * These limits apply to iDM Tevatron doesn't care about 100 keV splittings.

SI Limit

$$\sigma_1^{Nq} = \frac{\mu^2}{\pi \Lambda^4} B_{Nq}^2,$$

$$\sigma_2^{Nq} = \frac{\mu^2}{\pi \Lambda^4} f_{Nq}^2,$$

Best limit at low mass

SI Limit

Best limit at low mass

SI Limit

SD Limits:

$$\mathcal{O}_3 = \frac{i g_{\chi} g_q}{q^2 - M^2} (\bar{q} \gamma_{\mu} \gamma_5 q) (\bar{\chi} \gamma^{\mu} \gamma_5 \chi)$$

Best SD Limits over a wide mass range.

A dedicated CDF analysis underway! (ATLAS and CMS too...)

Light Mediators

- * Lets fix $\sigma_{
 m DD} \sim g_\chi^2 \, g_q^2 \, rac{\mu^2}{M^4}$ and lower M.
- * Then $\sigma_{1j} \sim \alpha_s g_\chi^2 g_q^2 \frac{1}{p_T^2}$ drops as M^4 .

Collider limit is lost for light mediators.

Direct detection discovery in conflict with LHC searches = discovery of light mediator...!?

Future Prospects: The Future started a month ago! LHC!

LHC Mono-jets

* Both CMS and ATLAS have several mono-jet searches:

Yu-hsin's talk:

the various LHC mono-jet analyses and how they may be improved! (in ~30 minutes, after "Dark Matter Beams", also recommended!)

Mono-something!

- * We can probe DM-SM interactions further with other "mono-somethings".
- * Mono-photon at LHC. First CMS study out.
- * Mono-photon at LEP! For DM-lepton interactions.
- * Mono-top in MFV (kamenik and Zupan).
- * In many models DM couples via the **Higgs**.

 Mono-Z (and VBF) may be sensitive to this.

Invisible Higgs searches can be interpreted as "direct detection" experiments!

LEP Mono-photon

Use spectrum shape to reject background peak.

LEP and Indirect Searches

* DM couplings to leptons is also probed by Fermi:

LEP wins

LEP wins

the

at low masthe

at low instrains

& constrains

Hooperon.

LEP DD Limits

Equal couplings to all SM fermions

Couplings to leptons only

Higgs Mediator

Direct detection is parametrically smaller.

A characteristic Higgs-coupled-DM signal. May uncover the identity of the mediator!

In progress, with Fox, Kopp and Tsai

To Conclude:

Colliders are placing competitive and complementary bounds to direct detection:

- * The **Tevatron** is the world record holder for light dark matter and for spin dependent.
- * Dedicated CDF, CMS, ATLAS **mono-jet** studies are underway.
- **LEP** mono-photons provide strong constraints.
- * The LHC can also be competitive in the case of scattering through the Higgs. May identify the the Higgs as the mediator.

Extra! Extra!

* Read all about it!

Future

* Shape:

- * A dedicated analysis may be more powerful.
- * CDF is working on a dedicated analysis!
- * So are CMS and ATLAS!
- * Mono-photon is also be interesting, complementary.

LEP

- * Directly constrain DM coupling to electrons.
- * **But**, in many models quark and lepton coupling are related (consider 2 benchmarks).
- * LEP is a clean environment. Ability to measure missing mass.

* Places non-trivial limits also on indirect searches in lepton channels (e.g. the Hooperon).

Mono-photon

* Use spectrum shape to reject background peak.

Higgs Mediator

Direct detection is parametrically smaller!

In progress, with Fox Kopp and Tsai

CDF: jet + MET (Ifb-1)

counting experiment:

$$E_T > 80 \, \text{GeV}$$
 $p_T(j1) > 80 \, \text{GeV}$
 $p_T(j2) < 30 \, \text{GeV}$
 $p_T(j3) < 20 \, \text{GeV}$

Background	Number of Events
Z -> nu nu	3203 +/- 137
W -> tau nu	2010 +/- 69
W -> mu nu	1570 +/- 54
W -> e nu	824 +/- 28
Z->11	87 +/- 3
QCD	708 +/- 146
Gamma plus Jet	209 +/- 41
Non-Collision	52 +/- 52
Total Predicted	8663 +/- 332
Data Observed	8449

Observed: 8449 events

Many more..

* Light mediators:

Indirect detection:

Equal coupling to all charged leptons

* DM experiments and colliders are often said to be related in a specific framework (SUSY).

"XENON100 is starting to probe the MSSM's pseudopod, LHC killed the Membrane, but the ectoplasm is still safe." [nature 67, 143 (2011)]